
 JuliaSaver

a fractal screen saver

by Damien M. Jones
Copyright © 1996 Temporary Sanity Designs, All Rights Reserved

Contents
I. System requirements
II. Installation
III. Configuration
IV. Technodweeb Details
V. Registering

I. System Requirements

· Pentium-class processor (not required, but strenuously recommended)
· Windows 95 or Windows NT (these instructions assume Windows 95)
· 640x480x256 or better display mode

II. Installation

Run SETUP.EXE. This will install the screen saver file into your WINDOWS\SYSTEM directory.

Once you've done that, right-click on your desktop, select the Screen Saver tab, and use the drop-down box to
select JuliaSaver. If everything works well, you should see Julia fractals appearing in the little preview window.
If you don't, something very likely went wrong. Try installing it again.

III. Configuration

Now that you've got this thing installed, you probably want to play with it a bit. Go ahead and click the Preview
button and see the fractals full-screen. Moving the mouse or pressing a key will shut off the screen saver. Don't
panic if the image doesn't disappear right away; sometimes it can take a couple of seconds. This is normal.
After all, calculating fractal images makes your CPU break out in a sweat.

Okay, you want to tweak the settings on this thing, maybe make it do something a little bit different. I can
understand that. Click the Settings... button and you'll get a nifty configuration dialog with a bunch of options in
it.

The Colors drop-down lets you choose from eight different color schemes. I suggest checking them all out; my
personal favorite is the grey-cyan-purple scheme (the default).

The Animation drop down lets you choose the animation method. Animation works by varying the c parameter
in the basic Julia equation—see the Technodweeb section for more information. Your options here are
Sinusoidal Bobbing, which moves the c point in a complex lissajous pattern over the Mandelbrot set; Cardioid
Trace, which moves the c point around the heart-shaped core of the Mandelbrot set; Random Waves, which
moves the c point around to random places, in sinusoidal-like patterns; and Totally Random, which selects a
different point at random for each frame.

The Speed slider controls how quickly the Julia shapes change. This only affects how quickly the c point varies.
Some images take longer than others to generate, but the c point (for Sinusoidal Bobbing, Cardioid Trace,
and Random Waves) moves at the same speed, no matter how fast the screen is updated. This slider lets you
control that speed. Move the slider to the left to slow down the animation; move it to the right to speed it up.
(Technodweebs: each notch on the slider represents a factor of 2.)

The last two sliders offer ways to help the screen update faster. The Iterations slider sets the maximum
number of times the Julia equation can be used for each point. Less iterations (move the slider to the left) mean
faster results, but you lose some detail. More iterations (move the slider to the right) give more detail, but take
longer. The Resolution slider sets the final resolution of the image. Lower resolution pictures (move the slider
to the left) take considerably less time to generate. Higher resolution pictures (move the slider to the right) look
nicer.

The next option is Animation Trails. If this option is selected, rather than simply refresh the entire screen with
a new fractal, it is blended with previous frames so you get a "trails" effect. This looks exceptionally nifty. The
one drawback is that you can't use Animation Trails with the highest Resolution setting—that would require
some serious computation that would slow things down enormously. The good news, though, is that when
Animation Trails is on, the fractal is effectively generated at a higher resolution anyway, and you get the added
benefit of speed from the lower resolution setting. Keep a napkin handy to mop up the drool.

To the right of Animation Trails is Shrink Palette. The color schemes ordinarily stretch to 128 colors; if you
move the Iterations slider to a setting lower than maximum, though, not all the colors will be used. If Shrink
Palette is checked, as it normally is, the colors will br shrunk to fit into the actual number of colors used.

The bottom option is Allow screen captures. If this box is checked, you can press ALT + PRINT SCREEN to
grab a snapshot of the fractal image and put it on the clipboard. You can then paste it into any graphics
program, such as Windows Paint. However, when this option is on, that means pressing the ALT key won't exit
the screen saver. That's why you can turn this "feature" off, if you like.

IV. Technodweeb Details

For those of you who actually know something about fractals, you may be curious about the fractal generation
parameters used in this program. This section contains those details unnecessary to your enjoyment of the
program.

First, all of the math is done using 80-bit floating-point numbers. "Why," you might ask, "is floating-point math
used when integer math is so much faster?" That's a very good question. If you happen to have a copy of
FractInt around, try this. Generate a fairly simple Julia fractal image at 1024x768, using integer math. Make a
note of the time. Now generate it again, using floating-point math. Make a note of the time. Chances are, if
you're using a Pentium-class processor, you won't see too much difference. So I'll let you in on a little secret: on
a Pentium processor, 80-bit floating point multiplies are up to ten times faster than 32-bit integer multiplies.
There's a bit more overhead in working with the FPU for the math, but it evens out in the end. And if it's at least
as fast, why wouldn't you want the more accurate math?

Second, the program uses a recursive algorithm to generate the image, skipping large areas of the image that
are solid colors. If you've used FractInt, you're familiar with the algorithm: it's called solid guessing. (No, I
didn't look at the FractInt code; I just wrote mine from scratch.) Also, since Julia fractals are symmetrical about
the center point, only half the screen is actually calculated; the other half is just copied from that. The amount of
acceleration this provides varies, but it helps enormously on most of the pictures. For a 1024x768 screen, four
guessing passes are made to generate the screen. For a 640x480 screen, only three passes are used. The
number scales based on the actual resolution of your screen. If you use the Resolution slider to lower the
resolution of the generated image, all you're actually doing is eliminating the last passes of fractal generation.
Note that this algorithm isn't quite fool-proof—sometimes it allows things to be "dropped out", particularly thin
strands poking into the interior of a Julia set. Oh well, nothing's perfect.

Third, the maximum number of iterations performed is 128. This is a somewhat arbitrary limit; I could have used
anything. 128 provides a good balance between detail and unreasonable slow-downs. My initial tests were
done with only 16 iterations, which does well even without the guessing. (Although on most images, 128
iterations with guessing is as fast as 16 iterations without.)

Now let's talk about those animations. If you're a fractal freak, you probably already know that each Julia set is
characterized by a single parameter, c. This represents a constant value used in the iterative equation, z=z²+c.
Change c, and you change the entire Julia set. All the animation does is slowly change the value of c, so that
each successive set is a little bit different than the one that was shown before. The Sinusoidal Bobbing
method is pretty straightforward; it just moves the real and imaginary parts of c (a complex number) using two
sine waves each. The Cardioid Trace method is a bit more sophisticated: it moves c around the heart-shaped
area of the Mandelbrot set. The Mandelbrot set is sort of a "road map" to Julia sets, and some of the most
interesting Julia sets can be found with c points near the heart shape (technically referred to as a cardioid). Just
so you won't get bored, the current position of the animation is saved whenever the screen saver stops, so it
always starts on something new. Random Waves selects a new real and imaginary component for c, and
moves towards it using a sine wave. To keep things interesting, it changes the real and imaginary components
at different times.

V. Registering

Well, okay. The program isn't much. So I'm not asking much. If you like JuliaSaver, just send me $10. Just
make that check out to me (Damien M. Jones), put it in an envelope, and drop it in the mail. Speaking of the
mail, here's the address you should put on the envelope:

Damien M. Jones
3207 SW Bessey Creek Trail
Palm City, FL 34990-1801

If you have a question, complaint, or suggestion regarding JuliaSaver, you can send a letter, or send e-mail to
dmj@emi.net (preferred). Updates to the program can be found on our web pages, at
http://www.emi.net/~dmj

Enjoy!

